Spitzer Space Telescope Celebrates 10 Years of Astronomical Discovery

The infrared vision of NASA's Spitzer Space Telescope has revealed that the Sombrero galaxy -- named after its appearance in visible light to a wide-brimmed hat -- is in fact two galaxies in one. Image Credit: NASA/JPL-Caltech

The infrared vision of NASA’s Spitzer Space Telescope has revealed that the Sombrero galaxy—named after its appearance in visible light to a wide-brimmed hat—is in fact two galaxies in one. Image Credit: NASA/JPL-Caltech

Ten years ago tonight, NASA’s fourth “Great Observatory”—the Space Infrared Telescope Facility (SIRTF)—was boosted into orbit from Cape Canaveral Air Force Station, Fla., atop a Delta II rocket. In doing so, it would complement the achievements of its three older siblings, the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory, in exploring the cosmos across almost the entire electromagnetic spectrum. Later renamed the “Spitzer Space Telescope” in honor of U.S. astronomer Lyman Spitzer, the 2,100-pound observatory has since carved its own niche in the annals of astrophysics and cosmology and continues to make remarkable and astounding scientific discoveries.

As the only one of the four Observatories not launched by the shuttle, it is more than a little ironic that SIRTF was originally conceived as a pallet-only Spacelab facility, with a 1-meter (3.3-foot) telescope and optical bench, operating from the payload bay of the reusable orbiter. In a 1979 report from the National Research Council of the National Academy of Sciences, it was described as “one of two major astrophysics facilities for Spacelab” and was deemed important for the development of long-duration, cryogenically-cooled space telescopes. The significance of SIRTF was that it would utilize a “dewar” of cryogenic helium to sufficiently cool its infrared detectors and thus meet the requirements to resolve its desired astronomical targets. Subsequent data from the 1983-launched Infrared Astronomy Satellite (IRAS) made the usefulness of SIRTF more obvious.

Anticipated for a first shuttle launch in 1990, and flying at one-yearly intervals thereafter, SIRTF encountered its first major hurdle when Challenger flew the Spacelab-2 payload of telescopes and astronomical detectors aboard STS-51F—commanded by the late Gordon Fullerton—in July 1985. Although this eight-day mission was an enormous success, it demonstrated that the “dirty” environment of particulate contaminants around the shuttle was poorly suited to the needs of high-energy astrophysics instruments. Contributing to the eventual demise of SIRTF as a shuttle-borne payload was the Challenger disaster in January 1986, and after several phases of “re-scoping” and redesign it emerged as a spacecraft which would be lofted into orbit atop a Delta II booster.

Since 25 August 2003, NASA's Spitzer Space Telescope has probed the infrared cosmos from an Earth-trailing heliocentric orbit. Image Credit: NASA

Since 25 August 2003, NASA’s Spitzer Space Telescope has probed the infrared cosmos from an Earth-trailing heliocentric orbit. Image Credit: NASA

As part of the redesign, SIRTF would be inserted into a so-called “Earth-trailing” orbit, which is “heliocentric” (Sun-circling), rather than “geocentric” (Earth-circling), and involved the spacecraft drifting away from Earth’s orbit at about 9.3 million miles (or 0.1 Astronomical Units) per year. The reason was that Earth itself generates a large heat load and emplacement at this sufficiently distant point would enable SIRTF to utilize passive cooling technologies, including a large Sun-shield, to greatly reduce its operating temperature and the mass of cryogenic helium it needed to carry. Its telescope and cryogenic assembly were built by Ball Aerospace and its scientific instruments—the Infrared Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multi-band Imaging Photometer for Spitzer (MIPS)—all featured significant involvement from academic and industry.

With a final price tag estimated at about $800 million, SIRTF rocketed into space from Space Launch Complex (SLC)-17B at Cape Canaveral Air Force Station, Fla., at 1:35 p.m. EDT on 25 August 2003. Only six weeks earlier, the same pad had played host to another Delta II and the launch of NASA’s Opportunity rover on its mission to Mars. Original plans called for SIRTF to operate for at least 30 months, although it was hoped to run the observatory for as long as five years, or until its liquid helium coolant was depleted. As circumstances transpired, this depletion did not occur until May 2009, after which it was determined that the two shortest-wavelength components of IRAC remained operable and a “Warm Mission” was authorized.

By this time, SIRTF had long since been renamed in honor of U.S. theoretical physicist and astronomer Lyman Spitzer (1914-1997), one of the earliest proponents for the idea of a space-based telescope. The formal announcement of the telescope’s new name came in December 2003, when NASA lauded “his vision and contribution to science” and noted that a NASA-sponsored contest had “received more than 7,000 essay entries from all over the world.” The winning entry came from a resident of British Columbia.

Since then, the mechanical Spitzer has played an enormous role in opening our eyes and consciousness to the mysteries and wonders of the Universe around us. It has been used to examine comets and asteroids, count stars, scrutinize planets and galaxies, and image football-shaped carbon spheres in space, known as “buckyballs.” Particular focuses have included Comet Tempel 1—impacted by NASA’s Deep Impact mission—and the surprising discovery in 2009 of Saturn’s largest ring.

Lyman Spitzer (1914-1997), one of the early proponents for an orbiting space telescope, was honoured in December 2003 by lending his name to the Spitzer Space Telescope. Photo Credit: Denise Applewhite/Princeton University

Lyman Spitzer (1914-1997), one of the early proponents for an orbiting space telescope, was honoured in December 2003 by lending his name to the Spitzer Space Telescope. Photo Credit: Denise Applewhite/Princeton University

Perhaps Spitzer’s most astonishing finds came from beyond our Solar System. The telescope was the first to detect light coming from a planet outside the Sun’s realm, which represented a feat not in the mission’s original design. With Spitzer’s ongoing studies of these exotic worlds, astronomers have been able to probe their composition, dynamics, and more, revolutionizing the study of exoplanet atmospheres. Other discoveries and accomplishments of the mission include a complete census of forming stars in nearby clouds, a new and improved map of the Milky Way’s spiral-arm structure, and, with the Hubble Space Telescope, discovering that the most distant galaxies known are more massive and mature than expected.

The observatory is expected to play an important part in the search for appropriate targets for President Barack Obama’s goal of boots on an asteroid by the middle of the next decade. In October 2013, Spitzer will attempt to perform infrared observations of a small near-Earth asteroid, known as 2009 DB, to better determine its size and composition and assess its suitability for NASA’s capture and redirect mission plan. “President Obama’s goal of visiting an asteroid by 2025 combines NASA’s diverse talents in a unified endeavor,” said John Grunsfeld, NASA’s associate administrator for science in Washington, D.C. “Using Spitzer to help us characterize asteroids and potential targets for an asteroid mission advances both science and exploration.”

Only three Great Observatories currently remain in orbit and in operational service. The Hubble Space Telescope, launched aboard shuttle mission STS-31 in April 1990, and first serviced by the STS-61 crew in December 1993, continues to return astonishing scientific results to this day and is expected to do so until at least 2014. The Compton Gamma Ray Observatory flew aboard shuttle mission STS-37 in April 1991, but suffered a failure of one of its three gyroscopes in December 1999 and was intentionally de-orbited the following June. The Advanced X-ray Astrophysics Facility (AXAF)—later named “Chandra,” in honor of the Indian astrophysicist Subramanyan Chandrasekhar—was launched into orbit in July 1999 aboard shuttle mission STS-93. It remains active to this day.

“I always knew Spitzer would work, but I had no idea that it would be as productive, exciting, and long-lived as it has been,” said Spitzer project scientist Michael Werner of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., who helped conceive the mission. “The spectacular images that it continues to return, and its cutting-edge science, go far beyond anything we could have imagined when we started on this journey more than 30 years ago.” Werner’s comments were reinforced by Dave Gallagher, Spitzer’s project manager at JPL from 1999-2004, who quoted the French novelist Marcel Proust: The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

 

Want to keep up-to-date with all things space? Be sure to “Like” AmericaSpace on Facebook and follow us on Twitter: @AmericaSpace

1 comment to Spitzer Space Telescope Celebrates 10 Years of Astronomical Discovery

  • […] round out the space telescope news, the Spitzer Space Telescope celebrated its 10th year in space this summer. Spitzer ran out of liquid helium coolant in 2009 but is still going strong […]