UPDATE: Good Falcon 9 Test Fire as SpaceX Aims for Aug 14 CRS-12 Launch

A successful test fire of the Falcon 9 for next week’s CRS-12 launch, NET Aug 14. Photo Credit: AmericaSpace/Jeff Seibert

  • UPDATED Aug 10:  SpaceX conducted a successful static test fire of the Falcon 9 rocket at pad 39A today, scheduled to launch CRS-12 next week. Watch our video of today’s test fire below:

 

  • UPDATED Aug 9: Launch has been pushed back one day, to 12:31 p.m. EDT on Monday, August 14.


ORIGINAL STORY:
  For the first time, SpaceX will launch a third Dragon cargo mission to the International Space Station (ISS) in a single calendar year, when the science-laden CRS-12 rockets away from Pad 39A at the Kennedy Space Center (KSC) on Sunday, 13 August. Current plans call for the Dragon—mounted atop an Upgraded Falcon 9 booster—to launch no earlier than 12:56 p.m. EDT, kicking off a three-day chasedown of the orbiting laboratory. Assuming an on-time launch, Dragon will be robotically captured by the station’s 57.7-foot-long (17.6-meter) Canadarm2 robotic arm on Wednesday, 16 August. This will set the stage for a month-long stay at the ISS.

CREAM will be attached to the Exposed Facility (EF) of Japan’s Kibo module. Photo Credit: NASA

Follow our CRS-12 Launch Tracker for updates and LIVE COVERAGE on launch day!

Earlier today (Tuesday), a group of researchers, scientists, principal investigators and program managers assembled for a teleconference to outline the payloads aboard CRS-12. All told, some 6,415 pounds (2,910 kg) of equipment, experiments and supplies will ride uphill aboard Dragon’s pressurized cargo module and its unpressurized “trunk”. This includes 485 pounds (220 kg) of crew supplies, 747 pounds (339 kg) of vehicle-related hardware, 66 pounds (33 kg) of Extravehicular Activity (EVA) gear and 117 pounds (53 kg) of computer resources. Topping the list will be 2,019 pounds (916 kg) of science investigations to support more than 250 research payloads across the ongoing Expedition 52 and upcoming Expedition 53 increments and beyond.

Notably, CRS-12 will carry a major payload aboard its unpressurized trunk. In pride of place is the 2,773-pound (1,258 kg) Cosmic Ray Energetics and Mass (CREAM) investigation, which will be robotically removed a few days after Dragon reaches the space station. It will be maneuvred into position, via ground commanding, and attached to an Earth-facing (or “zenith”) perch on the Exposed Facility (EF) of Japan’s Kibo module. For three years, CREAM will measure the charges of cosmic ray nuclei, ranging from hydrogen through iron, across a broad energy range. The experiment features co-operation between research institutions in the United States, Mexico, South Korea and France.

In terms of heritage, the ISS variant of the experiment (colloquially dubbed “Ice-CREAM”) will build on measurements made by six balloon-borne CREAM missions, conducted over Antarctica between 2004 and 2010. These flights achieved altitudes of up to 130,000 feet (40,000 meters) and collected up to 161 days’ worth of data. Aboard the space station, however, CREAM will be positioned high above the “sensible” atmosphere, allowing a resolution several orders of magnitude above its predecessor. Specifically, it will investigate the history of cosmic rays in our Milky Way Galaxy, as well as evaluating whether supernovae really supply the bulk of cosmic rays and whether their energy spectra results from a single mechanism.

Also aboard CRS-12 is the Rodent Research-9 investigation, designed to explore physiological changes in 20 mice as a means of better understanding the effects of vision loss and joint changes in astronauts over long-duration missions. Earlier this week, Expedition 52 astronauts Peggy Whitson and Jack Fischer began preparing station hardware for the arrival of the experiment. The mice will remain aboard the ISS for about a month, before returning to Earth aboard Dragon on about 10 September, for analysis of their various tissues, including their brains, muscles, hearts, joints, eyes and immune systems.

Elsewhere aboard CRS-12 will be the Crystallization of LRRK2 Under Microgravity Conditions experiment to grow larger versions of the LRRK2 protein, which is implicated in the pathology of Parkinson’s disease. Crystals of this protein will be observed after landing, using X-ray and neutron diffraction analysis, to better understand its structure and guide the development of inhibitor therapies to slow, prevent or stop the disease’s progress. Other payloads include the Effect of Microgravity on Stem Cell Mediated Recellularization (Lung Tissue) to explore the possibility of growing new lung tissue to repair damaged organs and reduce organ rejection and NanoRacks’ Kestrel Eye microsatellite.

Assuming an on-time launch on Sunday afternoon, it is expected that CRS-12 will be grappled by the space station’s Canadarm2 on Wednesday. At the controls of the arm will be Jack Fischer, backed up by recently-arrived Paolo Nespoli. Dragon will be berthed at the Earth-facing (or “nadir”) port of the Harmony node, where it will remain until at least 10 September. It will then be unberthed and released into space, where the pressurized module will perform a parachute-guided return to Earth and splashdown in the Pacific Ocean.

 

.

    Be sure to “LIKE” AmericaSpace on Facebook and follow us on Instagram Twitter!

.

Missions » ISS » COTS » CRS-12 »

1 comment to UPDATE: Good Falcon 9 Test Fire as SpaceX Aims for Aug 14 CRS-12 Launch

  • Tihomir

    (CREAM) “will be maneuvred into position, via ground commanding, and attached to an Earth-facing (or “zenith”) perch on the Exposed Facility (EF) of Japan’s Kibo module”

    –> I guess it’s either zenith or the Earth-facing side, and, in case of CREAM, it would only make sense to put it on the opposite, non-Earth facing side (zenith), whereas the Earth-facing side is, as you mention later correctly, called nadir.

    Other than that, thanks for the interesting article!

Leave a Reply

You can use these HTML tags

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>