‘Unless They Throw Me Out’: 30 Years Since the Shuttle’s Mission for Britain and Indonesia (Part 1)

The "core" NASA crew of the former Mission 61H, pictured during one of their post-Challenger extended simulations. From left to right are Mike Coats, John Blaha, Anna Fisher, Bob Springer and (standing) Jim Buchli. Photo Credit: NASA/Joachim Becker/SpaceFacts.de
The “core” NASA crew of the former Mission 61H, pictured during one of their post-Challenger extended simulations. From left to right are Mike Coats, John Blaha, Anna Fisher, Bob Springer, and (standing) Jim Buchli. Photo Credit: NASA/Joachim Becker/SpaceFacts.de

A quarter-century ago, Britain’s first astronaut—civilian chemist Helen Sharman—roared into orbit aboard a Soviet Soyuz spacecraft, bound for a week-long stay visit to the Mir space station. Less than a dozen months later, British-born U.S. astronaut Mike Foale flew the first of what turned into a six-mission career, which made him the most experienced American spacefarer between December 2003 and April 2008. And only days ago, British astronaut Tim Peake returned to Earth aboard Soyuz TMA-19M, wrapping up more than six months aboard the International Space Station (ISS) as a member of Expeditions 46 and 47.

Yet for each successful human space endeavor, there are others which never came to pass. Thirty years ago, this week, had history been kinder, a distinctly English accent might have crackled between Space Shuttle Columbia and NASA’s Johnson Space Center (JSC) in Houston, Texas. Royal Air Force Sqn. Ldr. Nigel Wood was deep into Payload Specialist (PS) training for Mission 61H at the time of the Challenger disaster and might have become Britain’s first man in space. Shoulder-to-shoulder with Wood aboard Columbia would have been a microbiologist named Pratiwi Sudarmono, who looked set to make Indonesia the first sovereign nation to have a woman as its first space traveler.

Planning for Wood’s flight had begun in January 1984, when the Ministry of Defence (MoD) revealed that it had contracted to launch its Skynet 4A and 4B communications satellites aboard the shuttle. However, in order to visibly demonstrate the British government’s support for its European partners, it reserved the right to fly a third satellite—Skynet 4C—atop an Ariane booster. “The £60 million or so that it will cost to fly two Skynet 4s on the shuttle is probably slightly cheaper than flying on Ariane,” Flight International explained after the announcement, “and no doubt was a factor in selecting the American launcher.” The row between the MoD and the French-led Arianespace organization over the Skynet 4C contract continued throughout 1984 and 1985, right up until the eve of the Challenger accident.

Nigel Wood, the man widely expected to become Britain's first national astronaut. Photo Credit: NASA/Joachim Becker/SpaceFacts.de
Nigel Wood, the man widely expected to become Britain’s first national astronaut. Photo Credit: NASA/Joachim Becker/SpaceFacts.de

Rumors of shortlisted candidates from the RAF and the Royal Navy (RN) proved accurate when, in February 1984, four finalists were selected for shuttle PS instruction. In addition to the RAF’s Wood, they included civilian physicist Christopher Holmes—then serving as the MoD’s deputy manager for Skynet 4—together with RN engineer Cmdr. Peter Longhurst and British Army engineer Lt. Col. Tony Boyle of the Royal Signals. (Boyle was later replaced by fellow Signals officer Maj. Richard Farrimond in July 1984.) Nigel Wood was named as the prime PS for the Skynet 4A mission by UK Defence Secretary Michael Heseltine on 24 April 1985, with Farrimond as backup. For the Skynet 4B mission, Longhurst would serve as the prime PS, with Holmes as backup. In a 2010 interview, Wood explained that Heseltine had only told him that he was the prime candidate a few minutes before the press conference. Shortly afterwards, the two men began 17 weeks of training alongside a five-member NASA crew, which had been announced some months earlier.

Originally designed “Mission 61C,” the names of Commander Mike Coats, Pilot John Blaha, and Mission Specialists Norm Thagard, Anna Fisher, and Bob Springer were released by NASA at the end of January 1985. The seven-day flight was scheduled for launch on 20 December, aboard Columbia, and the astronauts were tasked with the deployment of two commercial communications satellites—Westar VII for Western Union and Satcom Ku-2 for the Radio Corporation of America (RCA)—atop Payload Assist Module (PAM)-D boosters. Additionally, according to the NASA news release of the 61C crew announcement, the five astronauts would support the third Microgravity Science Laboratory (MSL-3) in Columbia’s payload bay and Thagard and Springer would execute at least one spacewalk to build the Experimental Assembly of Structures in EVA (EASE) and Assembly Concept for Construction of Erectable Space Structures (ACCESS) as part of early Space Station Freedom development work.

Interviewed years later as part of a NASA oral history, Blaha described being summoned to the office of George Abbey, then-head of the Flight Crew Operations Directorate (FCOD) at JSC. “I hadn’t seen George Abbey for four or five years,” Blaha recalled. “I mean, I’d seen him, but we hadn’t had a conversation.” Abbey extended the usual pre-assignment pleasantries, then asked if Blaha wanted to fly as Pilot of Mission 61C.

Not surprisingly, it was a question with only one answer, and Blaha began training for a mission whose character would morph significantly over the following months, as payloads and crew members were shifted. By April 1985, Coats’ mission had been redesignated “61H” and rescheduled for no earlier than June 1986; its crew expanded to seven, with British and Indonesian PS candidates soon to be announced and its payload changed to include Britain’s Skynet 4A, Indonesia’s Palapa-B3, and McDonnell Douglas’ pallet-mounted Electrophoresis Operations in Space (EOS) facility. Crew positions changed, too. In September 1985, Thagard was removed from the crew and reassigned to the 61G Galileo-deployment mission, then targeted for May 1986, in order to replace astronaut John Fabian, who was retiring from NASA. Thagard’s place on Mission 61H was taken by Jim Buchli.

The Palapa-B3 mission, which makes reference to Pratiwi Sudarmono's Indonesian Space Experiment (INSPEX). Image Credit: Joachim Becker/SpaceFacts.de
The Palapa-B3 mission, which makes reference to Pratiwi Sudarmono’s Indonesian Space Experiment (INSPEX). Image Credit: Joachim Becker/SpaceFacts.de

Unlike the post-Challenger shuttle manifest, in which payloads generally remained stable and astronauts remained “anchored” to their missions, this was not always the case in the early 1980s. “Today, you get assigned to a flight and that’s the flight you’ll fly,” reflected astronaut Steve Hawley in his NASA oral history. “If the payload’s delayed, then you delay with the payload. Back in those days, a lot of the flights were similar: they were launching satellites or running some experiments that could be quickly learned and it wasn’t as important to stick with your payload.”

By the time NASA published its final pre-Challenger shuttle manifest in November 1985, Mission 61H was scheduled to launch on 24 June 1986 with Skynet 4A and two other communications satellites: Palapa-B3, on behalf of the Indonesian government, and Western Union’s Westar VI-S. Columbia would enter an orbit of 190 nautical miles (350 km), inclined 28.5 degrees to the equator, for a seven-day flight.

With Nigel Wood assigned as the sixth member of the crew, his duties encompassed monitoring the deployment of the 2,750-pound (1,250-kg) Skynet 4A, one of the most powerful communications satellites ever placed into orbit at that time. Built by British Aerospace Dynamics, in partnership with Matra Marconi and Astrium, its cube-shaped “bus” housed four super-high-frequency transponders, two ultra-high-frequency transponders, and two C-band transponders. The satellite was capable of an operational lifetime of six years, powered by a pair of deployable solar array “wings,” which extended to 52.5 feet (16 meters) and provided 1,200 watts of electrical output in Geostationary Earth Orbit (GEO). It also incorporated an experimental Extremely High Frequency (EHF) uplink channel, to be utilized by the Royal Signals Research Establishment, whose hardware was delivered to payload integrator Matra Space Systems for installation and testing in January 1985. “Providing a single 45 GHz uplink channel,” explained Flight International, “the equipment will be used to determine propagation conditions encountered at high frequencies.”

The size and mass of Skynet 4A required it to utilize McDonnell Douglas’ uprated Payload Assist Module (PAM)-D2 to boost it from the low-Earth orbit altitude of the shuttle to its final GEO location. Most earlier shuttle-launched communications satellites had flown atop the smaller PAM-D, which carried the potential to deliver payloads measuring up to 6.6 feet (2 meters) in diameter and weighing up to 2,750 pounds (1,250 kg) to geostationary altitude, placing Skynet 4A right at the upper margin of its capability. The PAM-D2 sported an upgraded Star 63D engine and could dispatch larger payloads measuring up to 10 feet (3 meters) in diameter and weighing up to 4,140 pounds (1,880 kg) into GEO. This required a moderately larger “cradle” in the shuttle’s payload bay. The attractiveness of the PAM-D2 had already been noticed by the U.S. Air Force, which signed a $169 million contract with McDonnell Douglas in March 1985 to build 28 of the boosters to launch its network of Navstar satellites from the shuttle in 1987.

Unfortunately, Skynet 4A encountered technical difficulties through the spring and summer of 1985. In June, it was reported that the satellite was six months behind schedule and Peter Conchie, head of business planning in British Aerospace’s Space and Communications Division, described it as “a very tight program to hold.” By this point, Skynet 4A’s structural hardware had been integrated at British Aerospace’s facility in Stevenage, Hertfordshire, and was awaiting shipment “to various European locations for testing,” ahead of delivery to the Kennedy Space Center (KSC) in Florida. Three months later, in September, its communications payload—described as the most advanced of its kind ever built in Europe—was transported from Matra Space Systems to British Aerospace for integration and testing.

The Skynet 4A communications satellite was equipped with the most advanced payload ever developed in Europe in its day. Photo Credit: Astrium/Matra Marconi Space
The Skynet 4A communications satellite was equipped with the most advanced payload ever developed in Europe in its day. Photo Credit: Astrium/Matra Marconi Space

At around the same time, the 61H crew expanded to seven members with an addition of a second PS. By this stage the cargo manifest had expanded to include Palapa-B3, and if a customer’s satellite or experiment consumed more than a certain amount of the payload bay, NASA offered an accompanying seat for one of their representatives. In September 1985, a team of four candidates were selected by the Indonesian government to accompany Palapa-B3 into orbit. They included a journalist, an air force captain, telecommunications engineer Taufik Akbar, and female microbiologist Pratiwi Sudarmono. This group was winnowed to two candidates, with Pratiwi assigned to become Indonesia’s first person in space and Akbar serving as her backup. This promised to make the East Asian archipelago the first sovereign nation in history to have a woman as its first astronaut. Alongside Britain’s Nigel Wood, she would also be the eighth foreign national to be assigned to fly aboard the shuttle, after West Germany, Canada, Holland, France, and Saudi Arabia and—on Mission 61B in the fall of 1985—Mexico.

“I thought they were neat people,” John Blaha remembered of Wood and Pratiwi. “They were very, very talented people. I thought they brought a lot to the mission.” He also reflected that Wood was something of a kindred spirit, since both men were officers in their respective nations’ air forces. Moreover, Blaha had served as an RAF exchange pilot prior to his selection into NASA’s astronaut corps.

Little is known about Pratiwi’s experiments, with the exception of a giant Sumatran frog that would have flown as part of a life sciences investigation. Palapa-B3 would be the third satellite of its kind to be orbited by the shuttle, following on the heels of Palapa-B1 (launched on STS-7 in June 1983) and Palapa-B2 (launched on Mission 41B in February 1984). Unfortunately, the latter—and another satellite, Westar-VI—failed to enter GEO, due to malfunctions with their PAM-Ds. Following negotiations between NASA, prime contractor Hughes and the insurers, Lloyds of London, a daring “rescue” by the crew of Mission 51A in November 1984 retrieved both satellites and brought them back to Earth for refurbishment. The expectation was that both would be launched a year or so later, but in February 1985 it was reported that Lloyds had been unsuccessful in securing a buyer.

In the meantime, Palapa’s operator, Perumtel, ordered a replacement satellite in the aftermath of the 41B failure. Designated Palapa-B3, it was based on Hughes’ cylindrical HS-376 satellite “bus,” measuring 9 feet (2.7 meters) long in its stowed configuration and 7 feet (2.1 meters) in diameter and weighing 1,520 pounds (690 kg) at launch. However, after the deployment of its 6-foot-diameter (1.8-meter) antenna and outer telescoping solar panel, the spin-stabilized Palapa-B3 would expand to a length of almost 23 feet (6.9 meters). Its body-covered solar cells produced 1,100 watts of electrical power to support 24 C-band transponders, which carried 1,000 two-way voice circuits or a single color television transmission to Indonesia, Papua New Guinea, and the entire land mass of the Association of East Asian Nations (ASEAN).

Assigned to Mission 61H, Palapa-B3 was somewhat lighter than Skynet 4A and thus was assigned to fly atop the smaller PAM-D. The third communications satellite payload for Mike Coats’ mission was Westar VI-S, developed on behalf of Western Union, as a spare for Westar-VI. This satellite was originally co-manifested alongside the ASTRO-1 payload, aboard Mission 61E, but was subsequently moved to 61H. Like Palapa-B3, it was based on the cylindrical HS-376 “bus,” but weighed a little less at 1,280 pounds (580 kg) at launch. It carried 24 C-band transponders, each capable of accommodating 2,400 telephone calls or one television channel. Like Palapa-B3, it would also be delivered to GEO by means of the lighter PAM-D booster.

The "core" of the 61H remained together well into the spring of 1988, supporting two extended-duration simulations together. Seated are John Blaha (left) and Mike Coats, with Anna Fisher, Bob Springer and Jim Buchli standing. Photo Credit: NASA/Joachim Becker/SpaceFacts.de
The “core” of the 61H remained together well into the spring of 1988, supporting two extended-duration simulations together. Seated are John Blaha (left) and Mike Coats, with Anna Fisher, Bob Springer, and Jim Buchli standing. Photo Credit: NASA/Joachim Becker/SpaceFacts.de

All three satellites for Mission 61H—Skynet 4A, Palapa-B3, and Westar VI-S—and their attached PAMs would have each been housed within a sunshade cradle, composed of machined aluminum frames and chrome-plated steel longeron and keel trunnion fittings and covered with Mylar insulation. Visibly, when the cradle’s doors were opened in orbit, their gaping “jaws” resembled the title character of the popular 1980s-era arcade game “Pacman.” Each cradle measured 8 feet (2.4 meters) in length and 15 feet (4.6 meters) across the span of the shuttle’s payload bay. At its base was a turntable with a pair of electrical motors which imparted a required spin rate upon the satellites and their PAMs. This spin rate could be set at 45-100 revolutions per minute, dependent upon the stability needs of the payload, after which a spring ejection system would release them into space.

During Columbia’s ascent, the cradle doors would have been “open,” with restraint arms holding the satellites in place. Shortly after entering space, and after opening the shuttle’s payload bay doors, the doors would have been closed, in order to protect the unpowered satellites from the thermal extremes of low-Earth orbit. They would then be reopened shortly before the deployment procedure. After being released from the payload bay, the spin-stabilization of the satellites would help to even out these thermal stresses. Each deployment would require the “core” of the NASA crew to complete, and after departing Columbia’s vicinity Coats and Blaha would have maneuvered their ship to a safe separation distance before each satellite fired its PAM.

Almost three decades since the event, little material exists to describe the precise sequence of events—or even the configuration of the satellites, fore-to-aft, in the payload bay—but it can be supposed that the “character” of Mission 61H would have been not dissimilar to several of the shuttle’s other triple-PAM deployment flights, such as Mission 51G in June 1985 and Mission 51I in August 1985. Past precedent suggests that the three deployments would likely have gotten underway on the first day of the mission and occurred at 24-hour intervals thereafter.

In addition to overseeing the Skynet 4A deployment for the British government, Nigel Wood had trained to perform a series of (originally) six UK experiments in Columbia’s middeck. These were formally approved by NASA in June 1985 and focused upon the effects of cosmic radiation, changes in head-eye co-ordination, and adaptation to microgravity, as well as studies of liquid-solid adhesive bonding, the ability to estimate mass in weightlessness, motor skills—including postural control—and an ergonomics experiment. The first three of these investigations were military in nature, provided by the Royal Aircraft Establishment, the RAF’s Institute of Aviation Medicine and the Royal Armament Research and Development Establishment, whilst two others originated from the University of Stirling in Scotland. Lastly, the liquid-solid adhesive bonding experiment was provided by Kodak and was designed to explore the effect of “inertial wetting” in microgravity on the stability of liquid zones in the study of adhesion between solid and liquid surfaces.

However, on 18 January 1986, only days before the loss of Challenger, it was reported by Flight International that the inertial wetting experiment, developed by British chemist Dr. John Padday, had been dropped from the mission roster. In addition to his positions as chair of the European Space Agency (ESA) committee on space bioprocessing and head of the microgravity committee at the British National Space Centre, Dr. Padday headed Kodak’s research and development efforts in surface tension, microgravity, and fluid physics, and it was noted that he had achieved “fantastically good results from just a series of parabolic flights.” This prompted the inertial wetting experiment to be canceled.

As his long-awaited space mission drew inexorably closer, Nigel Wood had his own “bucket list” of things he was looking forward to seeing from low-Earth orbit. One of them was getting a bird’s-eye view of his birthplace in the area of the North Yorkshire moors. When pressed about his duties by a British journalist, he quipped that he did not expect to be called upon to perform an EVA, “unless they throw me out!”

Unfortunately for Wood, the bitterly cold morning of 28 January 1986 changed everything for his would-be mission.

 

The second part of this article will appear tomorrow.

 

 

Want to keep up-to-date with all things space? Be sure to “Like” AmericaSpace on Facebook and follow us on Twitter: @AmericaSpace

PHOTOS: MUOS-5 Moving Into Position After Blazing Atlas-V Launch

Does Pluto Have a Subsurface Ocean? New Research Says Probably